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Global quantum quench with a finite rate which crosses critical points is known to lead to universal
scaling of correlation functions as functions of the quench rate. We explore scaling properties of the
entanglement entropy of a subsystem in a harmonic chain during a mass quench which asymptotes
to finite constant values at early and late times and for which the dynamics is exactly solvable.
Both for fast and slow quenches we find that the entanglement entropy has a constant term plus a
term proportional to the subsystem size. For slow quenches, the constant piece is consistent with
Kibble-Zurek predictions. Furthermore, the quench rate dependence of the extensive piece enters
solely through the instantaneous correlation length at the Kibble-Zurek time, suggesting a scaling
hypothesis similar to that for correlation functions.

1. Introduction: The behavior of entanglement prop-
erties of a many-body system following a quantum
quench has been a subject of great interest in recent
times. When the quench is instananeous (i.e. a sudden
change of the hamiltonian), several results are known.
Perhaps the best known result pertains to the entangle-
ment entropy (EE) of a region of size l in a 1 + 1 dimen-
sional conformal field theory following a global instan-
taneous quench, SEE(l). As shown in [1], SEE(l) grows
linearly in time till t ⇡ l/2 and then saturates to a con-
stant value typical of a thermal state - a feature which
has been studied extensively in both field theory and in
holography. Generalisations of this result to conserved
charges and higher dimensions have been discussed more
recently [2–4]. The emphasis of these studies is to probe
the time evolution of the entanglement entropy.
In physical situations, quantum quench has a finite rate,
characterized by a time scale �t. When the quench in-
volves a critical point, universal scaling behavior has been
found for correlation functions at early times. The most
well known scaling behavior appears for a global quench
which starts from a massive phase with an initial gap mg,
crosses a critical point (chosen to be e.g. at time t = 0)
and ends in another massive phase. For slow quenches, it
has been conjectured that quantities obey Kibble-Zurek
scaling [5]: evidence for this has been found in several
solvable models and in numerical simulations [6, 7]. Such
scaling behavior follows from two assumptions. First, it
is assumed that as soon as the initial adiabatic evolution
breaks down at some time �tKZ (the Kibble-Zurek time)
the system becomes roughly diabatic. Secondly, one as-
sumes that the only length scale in the critical region
is the instantaneous correlation length ⇠KZ at the time
t = �tKZ . This implies that, for example, one point
functions scale as O(t) ⇠ ⇠��

KZ , where � denotes the con-
formal dimension of the operator O at the critical point.
An improved conjecture involves scaling functions. For
example, one and two point correlation functions are ex-

pected to be of the form [8–14]

O(t) ⇠ ⇠��
KZ F (t/tKZ)

hO(~x, t)O(~x0, t0)i ⇠ ⇠�2�
KZ F

 |~x� ~x0|
⇠KZ

,
(t� t0)

tKZ

�
(1)

Some time ago, studies of slow quenches in AdS/CFT
models have led to some insight into the origin of such
scaling without making these assumptions [15].
For protocols in relativistic theories which asymptote

to constant values at early times, one finds a di↵erent
scaling behavior in the regime ⇤�1

UV ⌧ �t ⌧ m�1
phys, where

⇤UV is the UV cuto↵ scale, and mphys denotes any phys-
ical mass scale in the problem. For example,

O(t) ⇠ �td�2� (2)

where d is the space-time dimension. This ”fast quench
scaling” behavior was first found in holographic studies
[16] and subsequently shown to be a completely general
result in any relativistic quantum field theory [17]. The
result follows from causality, and the fact that in this
regime linear response becomes a good approximation.
Finally, in the limit of an instantaneous quench, suitable
quantities saturate as a function of the rate : for quench
to a critical theory a rich variety of universal results are
known in 1 + 1 dimensions [18].
Much less is known about the behavior of entangle-

ment and Renyi entropies as functions of the quench rate.
This has been, however, studied for the 1d Ising model
(and generalizations) with a transverse field which de-
pends linearly on time, g(t) = 1 � t

⌧Q
[19]-[9, 20]. The

system is prepared in the instantaneous ground state at
some initial time, crossing criticality at t = 0. The em-
phasis of [19] and [9, 20] is on the slow regime, which
means ⌧Q � a where a is the lattice spacing, while
[21] also studies smaller values of ⌧Q. In particular, [19]
and [21] studied the EE for half of a finite chain and
found that the answer approaches SEE ⇠ 1

12 log ⇠KZ af-
ter su�ciently slow quenches. This is consistent with the

Cf. Deep inelastic scattering as a probe of entanglement
Dmitri E. Kharzeev, and Eugene M. Levin (arXiv 1702.03489)
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Physical point

Nf = 2

Nf = 12nd

Quenched
2nd1

Our target

1

Pure Gauge

QCD phase transition for various mass?
What happens when Nf=2 at massless limit?
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Not directly related to the real physics but useful for model building
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Our Question:

Our Conclusion:

Key word: Chiral symmetry on the lattice

Does the massless two flavor QCD have
U(1)A symmetry above Tc?

The massless two flavor QCD has U(1)A 
symmetry above Tc,
if the action has EXACT chiral symmetry.
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Tool : Lattice QCD
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1. Introduction for U(1)A sym. in QCD
SU(2) chiral symmetry is broken spontaneously, U(1) is by the anomaly

Evidence of effective axial U(1) symmetry restoration at high temperature QCD

SU(2)L � SU(2)R � U(1)V � U(1)A
SSB Anomaly 

SU(2)V � U(1)V : Symmetry of theory

T = 0

What is the anomaly?
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S =

Z
d

4
x D/ 

 is invariant under 

n
 ! ei✓�5 

 !  ei✓�5
Namely sym.

�5D/+D/�5 = 0

 = > �
u d

�

Because : 
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but the path integral measure is not invariant! non-trivial Jacobian.

D D ! D D ei� Anomaly(Fujikawa 1972)

This effect must exist for explanation of heavy η’

S =

Z
d

4
x D/ 

 is invariant under 

n
 ! ei✓�5 

 !  ei✓�5
Namely sym.

�5D/+D/�5 = 0

 = > �
u d

�

Because : 
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SU(2)L � SU(2)R � U(1)V � U(1)A
SSB Anomaly 

SU(2)V � U(1)V

T = 0

On the other hand,

SU(2) chiral symmetry is broken spontaneously, U(1) is by the anomaly

A. Tomiya: 15 Feb. 2017 at BNL
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SU(2)L � SU(2)RSU(2)V

U(1)A ??

Restored

T > Tc

What happens to the anomaly above Tc?
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SU(2)L � SU(2)R � U(1)V � U(1)A
SSB Anomaly 

SU(2)V � U(1)V

T = 0

On the other hand,

SU(2) chiral symmetry is broken spontaneously, U(1) is by the anomaly
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Symmetry leads degeneracy between mesons

Evidence of effective axial U(1) symmetry restoration at high temperature QCD

h⇡(x)⇡(0)i h�(x)�(0)i

h�(x)�(0)i h⌘(x)⌘(0)i

SU(2)L ⇥ SU(2)R

SU(2)L ⇥ SU(2)R

U(1)A U(1)A

Figure 2: The relationship between meson correlators. Top and bottom correlators are paired
via SU(2) chiral symmetry. Left and right are paired via U(1) chiral symmetry. Below the
critical temperature, these are not degenerated.

⇢(�)

�
�critical

Figure 3: The Dirac spectrum with the gap.

where ψ =T (u d). τ is the Pauli matrices τa for the favor degrees of freedom, however we
suppress index a for simplicity. And correlators of these composite field are given by,

ΠJ(x) ≡ ⟨J(x)J(0)⟩ − ⟨J(x)⟩⟨J(0)⟩, (3.13)

where J(x) = ψ̄(x)Γψ(x). Γ corresponds to gamma matrices and flavor matrices which
includes unit matrix. The symmetries are interpreted as correlators of there fields (Fig. 2).
At zero temperature, all of correlators are not degenerate since the existence of anomaly
and spontaneous symmetry breaking. On the other hand, above the critical temperature, π
channel and σ channel, δ channel and η channel are degenerate.

3.3 Overview of Cohen’s arguments

Here we briefly summarize Cohen’s arguments. He “proved” 3 things,

1. The effect of U(1)A anomaly on the correlators essentially comes from lower part of the
spectral density ρ(λ).

2. The disconnected part of correctors is identical. Precisely speaking, Ππ(x) = Πη(x)
and Πσ(x) = Πδ(x) at m → 0.

3. An existence of gap in the spectral density is not inconsistent with an analysis of the
connected part of correctors.

And then he concluded U(1)A is restored above the critical temperature. Here, “gap” in the
Dirac spectrum means ρ(λ) = 0 for λ <∃ λcritical (Fig. 3).

Here we introduce U(1)A susceptibility,

χU(1)A =
1

V

∫
d4x(⟨π(x)π(0)⟩ − ⟨δ(x)δ(0)⟩). (3.14)

11

1. Introduction for U(1)A sym. in QCD
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�U(1)A ⌘
Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i] “Order parameter”

of U(1)A

If this quantity(susceptibility) is 0 at V →∞, m→0,
U(1)A symmetry is effectively “restored”

(in other wards, invisible)

U(1)A U(1)A



ρ(λ) is a spectrum of the Dirac operator with QCD background

Evidence of effective axial U(1) symmetry restoration at high temperature QCD

(�5D/) j = �j j

Eigenvalue equation can be solved
 for a given gauge configuration

One can repeat for all configurations
-> λs are distributed in a certain way,

 = the Dirac spectrum ρ(λ)

The Dirac spectrum ρ(λ) has information
of symmetry of quarks

2. Our observables: Dirac spectrum 
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(Covariant derivative has information of the gauge field)
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If ρ has a (volume insensitive) gap, U(1) is effectively restored
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⇢(� < �cr) = 0

h ̄ i =
Z 1

0
d� ⇢(�)

2m

�2 +m2

�U(1)A =

Z 1

0
d� ⇢(�)

4m2

(�2 +m2)2

SU(2) restoration

IF �U(1)A = 0

Cohen(1996), Aoki-Fukaya-Taniguchi (2012)
SU(2) and U(1) restoration

|h ̄ i| = ⇡⇢(0) = 0

⇢(�) = lim
V!1

1

V

X

n

h�(�A
n � �)iA

For SU(2): The Banks-Casher relation
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2. Our observables: Dirac spectrum 

A. Tomiya: 15 Feb. 2017 at BNL

For U(1): Cohen’s argument �U(1)A ⌘
Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i]
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Argument by Cohen(1996)

“U(1)A violation”

If there is a gap in the Dirac spectrum

Cf : Aoki-Fukaya-Taniguchi (2012):
 λ3 may be enough for U(1)A effective restoration.

�

�
gap

Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i] =

Z 1

0
d�

4m2
⇢(�)

(m2 + �

2)2

! 0 (m ! 0)

2. Our observables: Dirac spectrum 

invisible

If ρ has a (volume insensitive) gap, U(1) is effectively restored

A. Tomiya: 15 Feb. 2017 at BNL

low-laying modes are essential for this argument!



Group Fermion Size Gap in the 
spectrum

UA(1)
Correlator U(1)A @Tc

JLQCD
(2013)

Overlap
(Top. fixed) 2 fm Gap Degenerate Restored

TWQCD
(2013)

Optimal 
domain-wall 3 fm No gap Degenerate Restored？

LLNL/RBC,
Hot QCD

(2013, 2014)

(Mobius)-
Domain-wall

(W/ ov)

2, 4, 
11 fm No gap No 

degeneracy Violated

Previous studies (DW type) are controversial !

What makes such difference?
Fermion(Chiral sym.), Volumes or Topology ?
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Symmetry leads degeneracy between mesons
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1. Introduction for U(1)A sym. in QCD
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3. Domain-wall and overlap fermion
Chiral symmetry on the lattice = Ginsparg-Wilson relation
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- Chiral symmetry in continuum theory

�5D/+D/�5 = 0

SU(2) and U(1) are parts of chiral symmetry in the action:
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- Chiral symmetry in continuum theory

�5D/+D/�5 = 0

SU(2) and U(1) are parts of chiral symmetry in the action:
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☆ Chiral symmetry on the lattice (Cf. Nielsen-Ninomiya thm)

“Ginsparg-Wilson relation”
(Here “a” is a lattice spacing)

�5D/+D/�5 = 2aD/�5D/
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“Ginsparg-Wilson relation”

If D satisfies GW relation...
(1) It has “exact” chiral symmetry

(2) U(1)A symmetry is broken by the Jacobian
as same as the continuum theory
(3) It satisfies the Atiyah-Singer index 
theorem

A. Tomiya: 15 Feb. 2017 at BNL
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3. Domain-wall and overlap fermion
Overlap fermion satisfies the Ginsparg-Wilson relation
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The overlap Dirac operator satisfies GW relation

However...
numerical cost of the sign function is extremely 
expensive!

There is an approximate one,
“The domain-wall fermion”

A. Tomiya: 15 Feb. 2017 at BNL
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Domain-wall fermion ～ Overlap fermion + mres

Domain-wall

Overlap 

Qualitative difference can be measured by “residual mass”: mres

Domain-wall fermion: 

A. Tomiya: 15 Feb. 2017 at BNL

approximate



4. Setup & Results
Sea quark: Domain-wall and Reweighted Overlap, Probe: DW and OV
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1. Sea quarks : Dynamical Möbius domain-wall fermion with small mres.

2. Calculation is done with and without OV/DW reweighting to realize 
overlap sea-quark effectively
3. Volume & topology : 3 Volumes (2-4 fm) and frequent topology 
tunneling.

4. Probes : Domain-wall and overlap valence quarks 

5. Temperature range: 172 MeV to 217 MeV. Tc ~ 190 MeV

Our Setup

A. Tomiya: 15 Feb. 2017 at BNL
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L3 × Lt β ma Ls mresa T [MeV] #trj Nconf N eff
conf N eff(2)

conf τCG
int τ topint MPSL

163 × 8 4.07 0.01 12 0.00166(15) 203(1) 6600 239 11(13) 45(8) 70 25(6) 5.4(3)

163 × 8 4.07 0.001 24 0.00097(43) 203(1) 12000 197 7 (7) 14(3) 315 23(4) 5.3(4)

163 × 8 4.10 0.01 12 0.00079(5) 217(1) 7000 203 23(7) 150(17) 134 30(10) 6.9(5)

163 × 8 4.10 0.001 24 0.00048(14) 217(1) 12000 214 31(10) 121(10) 104 24(4) 6.3(9)

323 × 8 4.07 0.001 24 0.00085(9) 203(1) 4200 210 10(3)∗ – 128 18(4) 11.7(9)

323 × 8 4.10 0.01 12 0.0009(5) 217(1) 3800 189 9(4)∗ – 125 30(10) 12.6(5)

323 × 8 4.10 0.005 24 0.00053(4) 217(1) 3100 146 20(4)∗ – 84 24(9) 11.6(7)

323 × 8 4.10 0.001 24 0.00048(5) 217(1) 7700 229 18(5)∗ – 10 23(5) 12.3(9)

323 × 12 4.18 0.01 16 0.00022(5) 172(1) 2600 (319) – – – – 5.8(1)

323 × 12 4.20 0.01 16 0.00020(1) 179(1) 3400 (341) – – – – –

323 × 12 4.22 0.01 16 0.00010(1) 187(1) 7000 (703) – – – – 5.4(2)

323 × 12 4.23 0.01 16 0.00008(1) 191(1) 5600 51 28(4) 38(5) 240 120(50) –

323 × 12 4.23 0.005 16 0.00012(1) 191(1) 10300 206 22(2) 27(2) 131 160(140) –

323 × 12 4.23 0.0025 16 0.00016(4) 191(1) 9400 195 16(2) 255(31) 85 110(30) –

323 × 12 4.24 0.01 16 0.00008(1) 195(1) 7600 49 23(5) 36(5) 125 100(40) 6.8(5)

323 × 12 4.24 0.005 16 0.00010(2) 195(1) 9700 190 9(18) 53(6) 84 130(30) –

323 × 12 4.24 0.0025 16 0.00011(2) 195(1) 16000 188 8(10) 7(1) 618 80(20) 6(2)

TABLE I: Summary of simulated ensembles. The residual mass mresa is calculated using the

definition (6). #trj denotes the number of trajectories. Nconf presents the number of configurations

generated (those with parenthesis are not used in the main analysis of this work but used for

the estimate of the critical temperature). N eff
conf and N eff(2)

conf are the effective statistics after the

overlap/domain-wall reweighting, which are defined by (15) and (16) (data with ∗ are measured

by low-mode approximation of the reweighting). τCG
int and τ topint are the integrated auto-correlation

time of the CG iteration count and topological charge, respectively, in the units of the molecular

dynamics time. MPSL is the screening mass of the pseudoscalar correlator, multiplied by the

lattice size L.
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(1) mres is enough 
small

(2) # of statistics
are increased 
from 2015

Calculations done by
BG/Q and SR16000

in KEK
using Iroiro++

(3) We care about 
finite size effect & 
“overlapping 
problem” for 
reweighting
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Reweighted Overlap with overlap probe has gap! and volume insensitive!!
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gi /  †
i �5[D�5 + �5D � 2aD�5D] i

To understand difference between spectra,
we define Ginsparg-Wilson relation violation for 
individual eigenmode:

ψ: Eigenmodes of the Dirac operator D

※ This “g” is zero for the overlap Dirac op.
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part ∆GW
π−δ and violating part ∆✘✘GW

π−δ as

∆ev
π−δ = ∆GW

π−δ +∆✘✘GW
π−δ, (20)

∆GW
π−δ ≡

1

V (1−m2)2

∑

i

2m2(1− λ(m)2
i )2

λ(m)4
i

, (21)

∆✘✘GW
π−δ ≡

1

V (1−m)2

∑

i

[ hi

λ(m)
i

− 4
gi

λ(m)
i

]
, (22)

where gi was already defined in Eq. (19) and

hi ≡
2(1−m)2

(1 +m)
ψ†
iγ5(H

4D
DW(m))−1γ5∆GW(H4D

DW(m))−1ψi +
2

1 +m

(
1 +

m

λ(m)2
i

)
gi, (23)
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gi /  †
i �5[D�5 + �5D � 2aD�5D] i

|gi|= 
|GW violation|

The lattice artifact can be 100 % for the near 
zero-modes for Domain-wall fermion

Difference coming from violation of Ginsparg-Wilson relation in low-laying modes

A. Tomiya: 15 Feb. 2017 at BNL

DW’s low-laying modes violate GW 
relation
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χU(1) also has GW violation
�U(1)A ⌘

Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i]
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FIG. 7. Fractional contribution of the GW violating term to h�⇡��i, i.e. h�⇠⇠
GW

⇡��i/h�(Nev)

⇡�� i, as a

function of m. The lattice data at � = 4.23, 323 ⇥ 12 (⇥16) (circles) and � = 4.24, 323 ⇥ 12 (⇥16)

(crosses) are plotted.
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FIG. 8. Fractional contribution of the GW violating term to h�⇡��i, i.e. h�⇠⇠
GW

⇡��i/h�(Nev)

⇡�� i, as a

function of �. At a fixed Nt, this effectively represents the dependence on temperature.

contributions. In Figure 9, we plot |(1 + �2

n)h�inn/(2�nh��
5

inn)| for each eigenmode as a

function of |�n|. This corresponds to a ratio of the first term to the second in the numerator of

(3.14). We find that the first term is typically 10–100 larger than the second term especially

for the low-lying modes. It implies that we can safely neglect the term of h��
5

inn in the

evaluation of m
res

.
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Ratio of susceptibility:
GW-breaking-modes v.s. 

Total
for DW fermion

Finer lattice
1/a ~ 2.2 GeV

Even for finer lattice, ~40% are artifact
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For overlap fermion, after taking of massless limit,
physical U(1) violating signal is disappeared

A. Tomiya: 15 Feb. 2017 at BNL
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the chiral phase transition (T ∼ 190–220 MeV) on different physical volume sizes (L = 2–4

fm), where frequent topology tunnelings occur.

Our results for the histograms of the Möbius domain-wall and (reweighted) overlap Dirac

operators both show a strong suppression of the near zero modes as decreasing the quark

mass. This behavior is stable against the changes in the lattice volume and lattice spacing.

If we do not perform the reweighting of their determinants, the overlap Dirac spectrum

shows unphysical peaks near zero. We have identified them as partially quenched lattice

artifacts, due to the strong violation of the Ginsparg-Wilson relation in the low-lying eigen-

modes of the Möbius domain-wall operator. Our analysis indicates a potential danger in

taking the chiral limit of any observables with domain-wall type fermions even when the

residual mass is small. If the target observable is sensitive to the low-lying modes and their

chiral properties, its chiral limit can be distorted by the lattice artifacts.

After removal of these artifacts by the OV/DW reweighting procedure, we have found

that the U(1)A susceptibility is consistent with zero in the chiral limit. From these evidences,

we conclude that U(1)A symmetry in two-flavor QCD is effectively restored above the critical

temperature in the vanishing quark mass limit.
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finer lattice as well

�U(1)A ⌘
Z
d

4
x[h⇡(x)⇡(0)i � h�(x)�(0)i]

using OV eigenmodes



1. unexpectedly large violation of the Ginsparg-Wilson 
relation in low-laying modes of DW operator even for 
small residual mass case

2. precise chiral symmetry both in sea and valence 
quark is crucial.

3. reweighted overlap Dirac spectrum and susceptibility 
suggest U(1)A effective restoration at the chiral limit.

In this work, we examined axial U(1) breaking with
Möbius domain-wall (DW), 

partially quenched overlap (on DW sea),
and reweighted overlap fermions.

We found,

6. Summary
Evidence of effective axial U(1) symmetry restoration at high temperature QCD
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Degeneracy of these channels
   <=> There are symmetries

Sym. of QCD<=>Degeneracy
h⇡(x)⇡(0)i h�(x)�(0)i

h�(x)�(0)i h⌘(x)⌘(0)i

SU(2)L ⇥ SU(2)R

SU(2)L ⇥ SU(2)R

U(1)A U(1)A

Figure 2: The relationship between meson correlators. Top and bottom correlators are paired
via SU(2) chiral symmetry. Left and right are paired via U(1) chiral symmetry. Below the
critical temperature, these are not degenerated.

⇢(�)

�
�critical

Figure 3: The Dirac spectrum with the gap.

where ψ =T (u d). τ is the Pauli matrices τa for the favor degrees of freedom, however we
suppress index a for simplicity. And correlators of these composite field are given by,

ΠJ(x) ≡ ⟨J(x)J(0)⟩ − ⟨J(x)⟩⟨J(0)⟩, (3.13)

where J(x) = ψ̄(x)Γψ(x). Γ corresponds to gamma matrices and flavor matrices which
includes unit matrix. The symmetries are interpreted as correlators of there fields (Fig. 2).
At zero temperature, all of correlators are not degenerate since the existence of anomaly
and spontaneous symmetry breaking. On the other hand, above the critical temperature, π
channel and σ channel, δ channel and η channel are degenerate.

3.3 Overview of Cohen’s arguments

Here we briefly summarize Cohen’s arguments. He “proved” 3 things,

1. The effect of U(1)A anomaly on the correlators essentially comes from lower part of the
spectral density ρ(λ).

2. The disconnected part of correctors is identical. Precisely speaking, Ππ(x) = Πη(x)
and Πσ(x) = Πδ(x) at m → 0.

3. An existence of gap in the spectral density is not inconsistent with an analysis of the
connected part of correctors.

And then he concluded U(1)A is restored above the critical temperature. Here, “gap” in the
Dirac spectrum means ρ(λ) = 0 for λ <∃ λcritical (Fig. 3).

Here we introduce U(1)A susceptibility,

χU(1)A =
1

V

∫
d4x(⟨π(x)π(0)⟩ − ⟨δ(x)δ(0)⟩). (3.14)

11

⇡(x) = i ̄(x)�5⌧ (x) �(x) =  ̄(x) (x)

�(x) =  ̄(x)⌧ (x) ⌘(x) = i ̄(x)�5 (x)
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L3 × Lt β m ρov(0–8MeV) ∆direct
π−δ a2 ∆ev

π−δa
2 ∆✘✘GW

π−δ/∆
ev
π−δ ∆ov

π−δa
2 ∆̄ov

π−δa
2

163 × 8 4.07 0.01 0.0071(18) 0.132(14) 0.139(12) 0.37(2) 0.19(5) 0.032(13)

163 × 8 4.07 0.001 3(3)×10−12 0.032(7) 0.0498(14) 0.982(2) 0.00015(5) 1.5(6)×10−4

163 × 8 4.10 0.01 0.0042(15) 0.073(12) 0.064(11) 0.278(40) 0.074(19) 0.012(6)

163 × 8 4.10 0.005∗ 0.0008(3) 0.009(2) – – 0.0003(1) 0.003(1)

163 × 8 4.10 0.001 1.5(1.5)×10−8 0.017(8) 0.0232(13) 0.983(4) 6(3)×10−5 6(3)×10−5

323 × 8 4.07 0.001 0.00002(1) 0.105(32) 0.105(35) 0.65(10) 0.03(2) -0.004(3)

323 × 8 4.10 0.01 0.0067(14) 0.076(5) 0.069(5) 0.30(2) 0.120(24) 0.065(29)

323 × 8 4.10 0.005 0.00147(20) 0.111(16) 0.107(15) 0.17(2) 0.111(34) 0.025(9)

323 × 8 4.10 0.001 1.5(1.3)× 10−5 0.036(11) 0.0125(50) 0.975(3) 0.097(38) -0.010(5)

323 × 12 4.23 0.01 0.011(1) 0.112(10) 0.109(4) 0.038(4) 0.11(1) 0.064(11)

323 × 12 4.23 0.005 0.00444 (96) 0.107(11) 0.107(8) 0.083(9) 0.115(16) 0.026(7)

323 × 12 4.23 0.0025 0.0017(4) 0.186(47) 0.216(41) 0.162(22) 0.162(40) 0.0065(20)

323 × 12 4.24 0.01 0.011(1) 0.135(8) 0.101(3) 0.046(3) 0.107(14) 0.065(10)

323 × 12 4.24 0.005 0.0054(9) 0.112(17) 0.124(13) 0.057(10) 0.122(21) 0.030(14)

323 × 12 4.24 0.0025 0.0008(5) 0.052(15) 0.041(13) 0.32(8) 0.078(52) 0.0030(6)

TABLE II: Summary of results. The data with the subscript “ov” denote those with reweighted

overlap fermions, otherwise, those with Möbius domain-wall fermions. The results at β = 4.10,

m = 0.005 on the 163×8 lattice (for which the asterisk is put) are obtained by choosing m = 0.005

for the overlap Dirac operator to reweight the Möbius domain-wall ensemble generated with m =

0.01.

is another measure of the violation of Ginsparg-Wilson relation. Both of these quantities

must be zero if the Ginsparg-Wilson relation is satisfied.

Figure 12 shows the quark mass dependence of the ratio ∆✘✘GW
π−δ/∆

ev
π−δ. The Ginsparg-

Wilson relation violating part ∆✘✘GW
π−δ dominates the signal as decreasing the quark mass. For

data points less than m = 5 MeV (at lower β), more than 60–98 % of the signal is the

contribution from ∆✘✘GW
π−δ. Thus, we need a careful control of the chiral symmetry on the

low-lying eigenmodes in taking the chiral limit of the U(1)A breaking observables.

Finally, let us examine the U(1)A susceptibility with overlap fermions. Here we do not
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Re-weighting tech. enables us to change another fermion determinant
( = quark loop effect exchange) 

Akio Tomiya(Osaka Univ.)

Multiplying R and taking average, we obtain 
the result with the overlap determinant

R =
Det[D2

OV]

Det[D2
DW]

(skip)

hOiOverlap /
Z

D ̄D DAµ O e�Sgaugee� ̄[DOV] 

=

Z
DAµ O e�SgaugeDet[D2

OV]

=

Z
DAµ O e�SgaugeDet[D2

OV]
Det[D2

DW]

Det[D2
DW]

=

Z
D ̄D DAµ OR e�Sgaugee� ̄[DDW] 

/hORiDomain Wall
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some difficulties of the sign function in the overlap-Dirac operator, as we have mentioned in
earlier subsection. To overcome these problems, we introduce rational approximation for the
sign function i.e. we employ the Möbius domain-wall fermion action [24, 25] for the quarks28.
Its determinant is equivalent (except for overall constants) to that of a 4-dimensional effective
Dirac operator:

D4D
DW(m) =

1 +m

2
+

1−m

2
γ5sgnrat(HM), sgnrat(HM) =

1− (T (HM))Ls

1 + (T (HM))Ls
, (6.1)

T (HM) =
1−HM

1 +HM
, HM = γ5

2DW

2 +DW
, (6.2)

We introduce three steps of the stout smearing for the gauge links. In order to evaluate
explicit chiral symmetry breaking which comes from the approximation of the sign function,
we introduce the residual mass, calculated as

mres =
⟨trG†∆LG⟩
⟨trG†G⟩ , ∆L =

1

2
γ5(γ5D

4D
DW +D4D

DWγ5 − 2aD4D
DWγ5D

4D
DW), (6.3)

where G is the contact-term-subtracted quark propagator. The residual mass is roughly 5-10
times smaller than that of the conventional domain-wall Dirac operator for a fixed Ls, the
size of fifth direction.

The overlap Dirac operator is obtained by choosing a better approximation for the sign
function in (6.1), while keeping the same kernel operator HM = γ5

(
2DW/(1 + DW )

)
. On

the generated configurations, we compute the lowest eigenmodes of the kernel operator 2HT ,
and exactly treat the sign function for them. Namely, we use

Dov(0) =
1

2

∑

λi<|λth|

(1 + γ5sgnλi)|λi⟩⟨λi|+D4D
DW(0)(1−

∑

λi<|λth|

|λi⟩⟨λi|), (6.4)

where λi is the i-th eigenvalue of HM and λth is a certain threshold, gives a good numerical
definition for the overlap Dirac operator. This is because the difference between sign function
in the overlap-Dirac operator and the approximated sign function in Möbius domain-wall
fermion is near-zero point for the argument. With our choice λth = 0.35 (for L = 16) and
0.24 (for L = 32) the residual mass is negligible, i.e. < 4× 10−3 MeV.

6.2 Reweightng and low-mode reweighting

In this work, one of out aims is to understand the difference between the domain-wall type
fermions and the overlap fermions. For this purpose, we perform the reweighting of the
dynamical Möbius domain-wall ensembles to those with the overlap Dirac operator determi-
nant. Derivation of conventional reweighting technique is following. We start from thermal

28A derivation is in Appendix F.4.
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R with UV suppression factor
low-mode reweighting

where λi is the i-th eigenvalue of HM and λth is a certain threshold, gives a good numerical
definition for the overlap Dirac operator. This is because the difference between sign function
in the overlap-Dirac operator and the approximated sign function in Möbius domain-wall
fermion is near-zero point for the argument. With our choice λth = 0.35 (for L = 16) and
0.24 (for L = 32) the residual mass is negligible, i.e. < 4× 10−3 MeV.

6.2 Reweightng and low-mode reweighting

In this work, one of out aims is to understand the difference between the domain-wall type
fermions and the overlap fermions. For this purpose, we perform the reweighting of the
dynamical Möbius domain-wall ensembles to those with the overlap Dirac operator determi-
nant. Derivation of conventional reweighting technique is following. We start from thermal
and quantum average of operator O with overlap-Dirac action,

⟨O⟩ov =
∫
Dψ̄DψDAµ O e−Sgaugee−ψ̄[DOV(m)]ψ (6.5)

=

∫
DAµ O e−SgaugeDet[D2

OV(m)] (6.6)

=

∫
DAµ O e−SgaugeDet[D2

OV(m)]
Det[D2

DW(m)]

Det[D2
DW(m)]

(6.7)

=

∫
Dψ̄DψDAµ OR(A) e−Sgaugee−ψ̄[DDW(m)]ψ (6.8)

=⟨OR(A)⟩DW (6.9)

In the first line is the definition of expectation value with overlap-Dirac kernel. In the second
line, we perform fermion path integral. In the third line, we insert functional determinant of
domain-wall Dirac operator. In the fourth line, we define reweighting factor, which depends
on the gauge configuration,

R(A) =
Det[D2

ov(m)]

Det[D2
DW(m)]

, (6.10)

where the ratio of the determinants are stochastically estimated usually. In the last line, we
use definition of the expectation value. However this definition of naive overlap/domain-wall
reweighting factor does not converge efficiently. Instead of this, we compute for L = 163 × 8
lattice,

R(A) =
DetD2

ov(m)

DetD2
DW(m)

DetD2
DW(1/2a)

DetD2
ov(1/2a)

. (for L = 163 × 8) (6.11)

where the ratio of the determinants are stochastically estimated using O(10) noise samples
for each configuration. Note that we have added an additional determinant of the quarks
(and ghosts) with a cut-off scale mass (1/2a), which are irrelevant for the low-energy physics
but effective in reducing statistical fluctuation originating from the UV modes [26].

Even for stochastic reweighting factor with UV-suppression factor cannot be obtained for
L = 323 × 8. In order to calculate reweighting factor, we employ low-mode approximation,
i.e. we approximate reweighting factor by multiplication of low-lying eigenvalues of Dirac

29

operator as,

R(A) ∼
∏Nth

i [(λov
i
m)

2]
∏Nth

i [(λDW
i
m)

2]
= Rlow(A), (for L = 163 × 8, 323 × 8) (6.12)

where λiov/DWm
is a eigenvalue for massive hermitian overlap/domain-wall Dirac operator.

Nth is order 10 truncation level for the approximation. This is not a precise approximation
of the determinant, but as discussed later, still gives information of the possible gap on the
Dirac eigenvalue histogram.

6.3 Ensambles

Our simulation set-up is summarized in Table 2. For the gauge part, we employ the tree-
level-improved Symanzik gauge action with β = 4.07 and 4.10. From the measurement of the
Wilson flow at zero-temperature the lattice spacing a is estimated as 0.135 fm and 0.125 fm,
respectively. For each value of β, we simulate on two volumes L3 ×Lt = 163 × 8 and 323 × 8,
at the quark mass amud = 0.001 (3.0 or 3.2 MeV). The size of the 5-th dimension Ls is chosen
such that the residual mass is kept around 1 MeV. From the Polyakov loop and the chiral
condensate, the simulated temperatures 180 MeV (β = 4.07) and 200 MeV (β = 4.10) are
estimated to be slightly above Tc. For each ensemble, we sample 50-200 gauge configurations
from 100-700 trajectories of the hybrid Monte Carlo updates.

L3 × Lt β mud(MeV) Ls mres(MeV) Temp.(MeV)

163 × 8 4.07 30 12 2.5 180
163 × 8 4.07 15∗ 12 2.4 180
163 × 8 4.07 3.0 24 1.4 180
163 × 8 4.10 32 12 1.2 200
163 × 8 4.10 16∗ 12 1.2 200
163 × 8 4.10 3.2 24 0.8 200

323 × 8 4.07 3.0 24 5∗∗ 180
323 × 8 4.10 32 12 1.7 200
323 × 8 4.10 16 24 1.7 200
323 × 8 4.10 3.2 24 0.7 200

Table 2: Our lattice set-up. Those with m∗
ud are obtained by the stochastic reweighting of

the Dirac operator determinant from the ensemble with the higher quark mass. Residual
mass with ∗∗ is estimated by weighted average of gi with some threshold.

7 Results

7.1 Domain-wall and Overlap spectrum

First, by comparing the spectrum of low-lying eigenvalues of γ5DDW (m) and that of the
reweighted γ5Dov(m) measured on the same configurations32, we examine the effect of the

32We measured eivenvalue of γ5D instead of D itself. This is because, if D has γ5 hermiticity, γ5D is
hermitian operator. Thus eigenvalue of γ5D is real number. Note that, both of eigenvalue can be mapped
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Low-mode reweighting factor does not 
seems to affect existence of the gap
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Figure 10: Reweighting factor with the low-mode reweighting (stars) and stochastic reweight-
ing including all modes (pluses). The horizontal axis is the lowest eigenvalue of the overlap-
Dirac operator for that gauge configuration. Data at β = 4.07 and amud = 0.001 on the
163 × 8 lattice are plotted.

We incorporate all the eigenvalues below λ ∼ 100 MeV. Here, we show that this low-mode
reweighting can be used to study the gap in the Dirac spectrum.

On the smaller lattice, we compare the reweighting and the low-mode reweighting as
shown in Fig. 10. Pluses and crosses represent the conventional stochastic reweighting factor
and the low-mode reweighting factor, respectively. Each point represents a gauge configura-
tion on which the reweighting factor is calculated. As the horizontal axis, we take the first
eigenvalue λ1. Below λ1 ∼ 20 MeV, both reweighting factors are consistent and essentially
zero. Configurations having near-zero modes are strongly suppressed in both reweighting
techniques, and we may therefore conclude that the non-existence of the gap in the Dirac
spectrum does not depend on the details of the reweighting technique.

8 Summary and discussion

In this section, we summarize our result and discuss remnant issues. And following subsection,
we note future perspective of this work.

8.1 Summary

We have studied the low-lying eigenvalue spectrum of the Möbius domain-wall and reweighted
overlap Dirac operators slightly above the critical temperature, in order to judge that the
U(1)A symmetry is restored or not. Our preliminary result at the lightest quark mass shows
a significant difference between the overlap and Möbius domain-wall eigenvalue spectrum.
This result points to a need for carefully treatment of chiral symmetry in the Lagrangian.
The overlap-Dirac eigenvalue spectrum for the lightest quark mass shows a gap, which is
insensitive to the volume, while that of the Möbius domain-wall has small but non-zero
spectrum near λ = 0. The large violation of the Ginsparg-Wilson relation on the low-modes
of the domain-wall Dirac operator may explain the difference.

In order to analyze accurately, we start configuration generation near to continuum limit.
Such ensemble gives better stochastic reweighting factor, then we do not have to use low-mode
approximation for the reweighting factor for such ensemble.
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This is now testing in finer (and 
larger) lattice...
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Massless Dirac spectrum
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Here, the i–th eigenvalue of massless Dirac operator λi is obtained by,

λia ≡
√

a2(λmi )
2 − a2m2

ud√
1− a2m2

ud

, (7.1)

where λmi is the i–th eigenvalue of massive hermitian Dirac operator γ5D4D
DW(m) or γ5Dov(m).

When the quark mass is heavy, mud ∼ 30 MeV, our data show apparent difference between
the Möbius domain-wall and overlap-Dirac eigenvalues near λ ∼ 0 (Fig. 7, Yellow bars). The
left panel shows the spectrum for γ5D4D

DW(0), while the right panel is those of (reweighted)
γ5Dov(0). The overlap-Dirac spectrum (right panel) has a peak around λ ∼ 0, while the
Möbius Domain-wall does not. The peak in the overlap spectrum originates from chiral zero-
modes, which are determined unambiguously thanks to the nearly exact chiral symmetry of
the overlap Dirac operator. Above the peak region, i.e. λa ∼ 0.02, the spectral density for
the overlap becomes lower than that of Möbius domain-wall.

On the other hand, for the smaller mud (∼ 3 MeV) we do not find the peak after the
reweighting, and the near-zero modes around λa ∼ 0.01 are washed out as shown in right
panel of Figure 7, where we present the data for L ∼ 2 fm (top) and L ∼ 4 fm (bottom). For
the reweighted overlap, a gap ∼ 20 MeV is found on both volumes, while the Möbius domain-
wall spectrum shows eigenmodes below |aλ| ≈ 0.01. On the large volume, in particular, there
is an eigenvalue in the lowest bin. This suggests that importance of the chiral symmetry of
the fermion determinant. The data at T ∼ 200 MeV are qualitatively similar (Figure 8).

The reweighted overlap Dirac spectrum shows a gap, which is apparently insensitive to
the volume. Then, we may conclude that the difference from the Möbius domain-wall fermion
is mainly due to the violation of the chiral symmetry, that we investigate detail below.
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can be obtained by subtracting,
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Figure 7: The eigenvalue histograms of the domain wall (left panels) and reweighted overlap
(right) Dirac operators. The data for T ∼ 180 MeV on L3 = 163 (top panels) and L3 = 323

(bottom) lattices are presented.

7.2 Ginsparg-Wilson relation violation

Wemeasure the violation of the Ginsparg-Wilson relation on each eigenmode of the Hermitian
Dirac operator γ5D through

gi ≡
ψ†
iγ5[Dγ5 + γ5D − 2aDγ5D]ψi

λmi

[
(1− amud)2

2(1 + amud)

]
, (7.2)

where λmi , ψi denotes the i–th eigenvalue/eigenvector of massive hermitian Dirac operator
respectively. D is the domain-wall or overlap Dirac operator. Last factor in (7.2) comes from
the normalization of the Dirac operator. Note that one can obtain the residual mass by an
weighted average of gi,

mres =
⟨trG†∆LG⟩
⟨trG†G⟩ =

∑

i

λmi (1 + amud)

(1− amud)2(aλmi )
2
gi

/
∑

i

1

(aλmi )
2
. (7.3)

where the sum runs over all eigenvalues.
Figure 9 shows |gi| for each eigenvalue on the configuration of 163 × 8 and mud ∼ 3

MeV. For the Möbius domain-wall fermion (crosses), the low-lying modes violate the chiral
symmetry to the order of one, which means that the expectation value ofDγ5+γ5D−2aDγ5D
is of the same order of λ. The violation is of course negligible for the overlap fermion (stars).
This result indicates that the low modes of the Möbius domain-wall Dirac operator contain
substantial lattice artifact. Such lattice artifacts may also distort the eigenvalues, and explain
the difference from the overlap operator.

7.3 Low mode reweighting

As mentioned above, the conventional stochastic reweighting does not work on the larger
lattice. Instead, we introduce an approximation of using only the low-lying eigenvalues.
This corresponds to a certain modification of the fermion action in the ultraviolet regime.
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Figure 27: Low-mode reweighting factors for each configuration for L = 16, β = 4.10. Left
panel and right panel correspond to m = 0.01 and m = 0.001 respectively.
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Figure 28: Low-mode reweighting factors for each configuration for L = 32, β = 4.07,
m = 0.001.
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where fabc is the structure constant of the gauge group. The Yang-Mills action SYM is defined
using the field strength,

SYM ≡ 1

4

∑

µν

∫
d4xF a

µνF
a
µν ,

=
1

4

∫
d4x(∂µA

a
µ − ∂νA

a
µ + gfabcAb

µA
c
ν)

2,

≡ 1

2
tr

∫
d4xFµνFµν , (3.5)

where the tr is a trace over the gauge group. The gauge transformation is given by,

ψ(x) → ψ′(x) = g(x)ψ(x), ψ̄ → ψ̄′(x) = ψ̄(x)g†(x), (3.6)

Aµ(x) → A′
µ(x) = g(x)Aµ(x)g

†(x) +
1

ig
(∂µg(x))g

†(x). (3.7)

where g(x) is a function whose values are the gauge group. The fermion with the covariant
derivative and the field strength of the gauge field are covariant under the gauge transforma-
tion. Then whole the QCD Lagrangian is invariant under the gauge transformation.

Taking the quark mass vanishing limit (m → 0), another global symmetry arises which
is called chiral symmetry : the Lagrangian is invariant under

ψ(x) → ψ′(x) = eiθγ5τ
A
ψ(x), ψ̄ → ψ̄′(x) = ψ̄(x)eiθγ5τ

B
, (3.8)

where θ is a real parameter. τA is a generator of U(2) group, τA = (τ 0, τa). τ 0 and τa

represents the unit matrix and Pauli matrix, respectively. τ 0 corresponds to a U(1) subgroup
of the U(2) chiral symmetry. This symmetry is supported from a fact,

γ5 /D + /Dγ5 = 0. (3.9)

In total, QCD Lagrangian has following global symmetry,

U(2)L × U(2)R ≃ SU(2)L × SU(2)R × U(1)V × U(1)A , (3.10)

where SU(2)L × SU(2)R symmetry corresponds to

ψ → eiθγ5τ
a
ψ, (3.11)

ψ̄ → ψ̄e+iθτaγ5 , (3.12)

(the SU(2) chiral symmetry) and

ψ → eiθτ
a
ψ, (3.13)

ψ̄ → ψ̄e−iθτa . (3.14)

On the other hand, the U(1)A symmetry, equivalently the U(1) chiral symmetry, corresponds
to

ψ → eiθγ5ψ, (3.15)

ψ̄ → ψ̄e+iθγ5 . (3.16)
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Cohen’s argument：

4.2.2 U(1) anomaly on disconnected diagram

In this subsection we discuss disconnected diagram contribution when we assume the gap
in the spectrum based on [6]. SU(2) chiral symmetry is restored above the QCD critical
temperature, this means,

⟨ψ̄ψ⟩ = 0, (4.18)

where ⟨· · ·⟩ means thermal and quantum average of the operators, as same as previous sec-
tions. This implies ⟨ρ(λ)⟩ = 0 because of the Banks-Casher relation. This gives stronger
constraints to ρA(0). This can be seen from path integral representation of the spectral
density,

0 =
1

Z

∫
[DA]e−SYMDet [ /D −m]ρA(0). (4.19)

In the integral, e−SYMDet [ /D − m] is positive19, and ρA(λ) is non-negative because it is a
number density. Therefore ρA(0) = 0 for all gauge configuration to realize (4.18). This
means, there are no near zero-modes on all of the gauge configuration.

He argued the difference between the correlator of σ and the correlator of η, which are in
pair on U(1)A and SU(2) chiral symmetry,

Πσ(x)− Πδ(x) =
1

Z

∫
[DA]e−SYMDet [ /D −m] [Tr [G(x, x)]Tr [G(0, 0)]] (4.20)

where G(x, y) is a quark propagator20 in the presence of a background gauge field Aµ. Here
we use isospin symmetry. Note that, this quantity only comes from disconnected diagram
in terms of quark line. If Tr [G(x, x)] ∼ O(m) is verified for all possible configuration, this
leads,

Πσ(x)− Πδ(x) ∼ O(m2). (4.21)

In which case, we can conclude Πσ(x)− Πδ(x) = 0 at the quark mass vanishing limit.
In order to verify Tr [G(x, x)] ∼ O(m), we rewrite the quark propagator in terms of the

Dirac spectrum. The quark propagator can be expressed as,

Tr [G(x, x)] =
∑

j

−mψ†
j(x)ψj(x)

λ2j +m2
(4.22)

=

∫
dλ

−mρA(λ)

λ2 +m2
(4.23)

This means, the quark propagator is negative semi-definite for any gauge configurations.

19The determinant is real and positive. This is because,

Det [ /D −m] =
∏

n

[iλn −m] =
∏

λn>0

[λ2n +m2] > 0.

Here we ignore zero-modes.
20This is a matrix in flavor space.

20

The chiral condensate vanishes above the critical temperature at quark mass vanishing
limit, and is represented by the path integral,

⟨ψ̄ψ⟩ = 1

Z

∫
[DA]e−SYMDet [ /D −m]Tr [G(x, x)] (4.24)

∼ −O(m) (4.25)

In the quark mass vanishing limit, this gives,

0 =
1

Z

∫
[DA]e−SYMDet [ /D −m]Tr [G(x, x)]. (4.26)

The integrant in (4.26) is negative semi-definite, then we can conclude,

e−SYMDet [ /D −m]tr [G(x, x)] = 0, (4.27)

for all configuration. This leads tr [G(x, x)] = 0 and e−SYMDet [ /D−m]Tr [G(x, x)]Tr [G(0, 0)] =
0. Therefore we obtain, Πσ(x) = Πδ(x). This means ⟨σ(x)σ(0)⟩ and ⟨δ(x)δ(0)⟩ are identical
above the critical temperature.

Next we prove Πη = Ππ. The difference between them is given by,

Πη − Ππ =
1

Z

∫
[DA]e−SYMDet [ /D −m] [Tr [G(x, x)γ5]Tr [G(0, 0)γ5]] (4.28)

In order to evaluate this integral, first we prove |Tr [G(x, x)γ5]| ≤ |Tr [G(x, x)]|. This comes
from ψ†

j(1 − γ5)2ψj ≥ 021. Then we conclude Πη = Ππ at the chiral limit. Summing up all
of results in this subsection, we conclude that all of mesons in the multiplet in U(2)× U(2)
are identical.

See (4.23), if there is a gap in the spectrum (Fig. 5), all of correlators are identical. In
other words, the gap at chiral and thermodynamical limit is sufficient condition for U(1)
restoration.

4.3 Correlator and Dirac spectrum on the lattice

Aoki, Fukaya and Taniguchi improved in the treatment of UV structure of the Dirac spectrum
which does not treat accurate in Cohen’s argument. They used overlap fermion, which

21Evaluate ψ†
j (1− γ5)2ψj in two different ways,

ψ†
j (1− γ5)

2ψj = |(1− γ5)ψj |2 ≥ 0, (4.29)

ψ†
j (1− γ5)

2ψj = 2ψ†
jψj − 2ψ†

jγ5ψj . (4.30)

Expand ψ†
j (1− γ5)2ψj ,

|ψ†
jψj | ≥ |ψ†

jγ5ψj |. (4.31)

We multiply 1
|iλj−m| both side, and sum over j, we obtain

Tr [G(x, x)] ≥ Tr [G(x, x)γ5] (4.32)
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